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1. Introduction

The main notion we consider in this paper is the difference index of a difference algebraic system 
over a difference field K (i.e. a field with a transforming operator, for instance K := Q(x) the field of 
rational functions with the shift σ : f (x) �→ f (x + 1) as a transforming operator). Roughly speaking, 
the difference index is an important numerical invariant associated to a difference algebraic system 
which provides the order of transform we need to apply to the system to obtain the relations up to a 
prescribed order that all the solutions must verify. In some sense, difference indices can be regarded 
as a measure of the complexity of difference algebraic systems. The difference index is also closely 
related to some other important invariants of a difference algebraic system, for example, the order 
and the Hilbert–Levin regularity. Moreover, difference indices can be utilized to solve the difference 
ideal membership problem.
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The analogous notion for a differential algebraic system is the differential index, which has been 
extensively studied for many years. Actually, there are several definitions of differential indices of a 
differential algebraic system in the literature (see for instance D’Alfonso et al., 2009, 2008; Campbell 
and Gear, 1995; Le Vey, 1994; Pantelides, 1988; Seiler, 1999). Although they are not completely equiv-
alent, in each case they represent a measure of the implicitness of the given system. However, the 
corresponding notion of difference indices for difference algebraic systems has been rarely studied yet. 
Recently in Wang (2016), difference indices of quasi-regular difference algebraic systems were first de-
fined following the analogous method used in D’Alfonso et al. (2009, 2008) by D’Alfonso, Jeronimo, 
Massaccesi and Solernó. In this paper, we will generalize the definition of difference indices to more 
general difference algebraic systems, i.e. quasi-prime difference algebraic systems. The difficulty is to 
calculate the transcendence degrees of certain associated field extensions without the regular con-
dition. In order to overcome this difficulty, we will introduce the new concept of quasi dimension 
polynomials for quasi-prime difference algebraic systems. Let us explain it in more details.

Suppose F is a set of difference polynomials, � is the difference ideal generated by F , and p is 
a minimal reflexive prime difference ideal over �. Denote by �k the algebraic ideal generated by F
and the transforms of F up to the order k − 1 in the corresponding localized polynomial ring at p. 
Then we say the system F is quasi-prime at p if �k is a prime ideal for any positive integer k and �
is reflexive. For a difference algebraic system F which is quasi-prime at p, we consider the dimension 
of �k as a function of k, denoted by ψ(k). It turns out that ψ(k) becomes a polynomial of degree 
one for k large enough, which we call the p-quasi dimension polynomial of the system F . By virtue of 
p-quasi dimension polynomials, we can give the definition of the difference index of a quasi-prime 
difference algebraic system, which is called the p-difference index. As usual, its definition follows from 
a certain chain which eventually becomes stationary. In analogy with the case of P-differential indices 
in D’Alfonso et al. (2009) and the case of p-difference indices in Wang (2016), the chain is established 
by the sequence of ranks of certain Jacobian submatrices associated with the system F . Assume F
is quasi-prime at �, ω is the �-difference index of the system F and ρ is the least k such that the 
�-quasi dimension polynomial of F holds. Then it turns out that for i +ω ≥ ρ +e −1 (e is the highest 
order of F ), ω satisfies:

�i−e+1+ω ∩ Ai = � ∩ Ai,

where Ai is the polynomial ring in the variables with orders no more than i, which meets our expec-
tation for difference indices.

This approach enables us to give an upper bound for the p-difference index of a quasi-prime 
difference algebraic system. Basing on this, we can give several applications of p-difference indices, 
including an upper bound for the Hilbert–Levin regularity and an upper bound of orders for the 
difference ideal membership problem of a quasi-prime difference algebraic system.

The paper will be organized as follows. In Section 2, we list some basic notions from difference 
algebra which will be used later. In Section 3, the p-quasi dimension polynomial of a quasi-prime 
difference algebraic system is defined. In Section 4, we introduce a family of pseudo-Jacobian matrices 
and give the definition of p-difference indices through studying the ranks of them. In Section 5, some 
properties of p-difference indices will be proved. In Section 6, several applications of p-difference 
indices are given. In Section 7, we give an example.

2. Preliminaries

A difference ring or σ -ring for short (R, σ), is a commutative ring R together with a ring endomor-
phism σ : R → R . If R is a field, then we call it a difference field, or a σ -field for short. We call σ the 
transforming operator of R and usually omit σ from the notation, simply refer to R as a σ -ring or a 
σ -field. A typical example of σ -field is the field of rational functions Q(x) with σ( f (x)) = f (x + 1). 
For any a ∈ R , σ(a) is called the transform of a. For n ∈N, σ n(a) = σ n−1(σ (a)) is called the n-th trans-
form of a, with the usual assumption σ 0(a) = a. In this paper, unless otherwise specified, K is always 
assumed to be a σ -field of characteristic 0.
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Definition 2.1. Let R be a σ -ring. An ideal I of R is called a σ -ideal if for a ∈ R , a ∈ I implies σ(a) ∈ I . 
Suppose I is a σ -ideal of R , then I is said to be

• reflexive if σ(a) ∈ I implies a ∈ I for a ∈ R;
• σ -prime if I is reflexive and a prime ideal as an algebraic ideal.

For a subset F in a σ -ring, we denote by [F ] the σ -ideal generated by F . Let K be a σ -field. 
Suppose Y = {y1, . . . , yn} is a set of σ -indeterminates over K . Then the σ -polynomial ring over K in 
Y is the polynomial ring in the variables Y, σ(Y), σ 2(Y), . . .. It is denoted by

K {Y} = K {y1, . . . , yn}
and has a natural K -σ -algebra structure. For a σ -polynomial f ∈ K {Y}, the order of f , denoted by 
ord( f ), is the largest j such that the variable σ j(yi) appears in f for some i. For more details about 
difference algebra, one can refer to Wibmer (2013).

For the later use, we give the classical Jacobian Criterion here.

Lemma 2.2 (Jacobian Criterion). Let K be a field of characteristic 0 and S = K [y1, . . . , yn] the polynomial 
ring over K . Let I = ( f1, . . . , fr) be an ideal of S and set R = S/I . Let P be a prime ideal of S containing I and 
assume κ(P ) is the residue class field of P . Then

dimκ(P ) κ(P ) ⊗ �R P /K = n − rankκ(P ) J ,

where J := (∂ f i/∂ y j)r×n is the Jacobian matrix. In particular, if I is itself a prime ideal, then dimκ(I) �κ(I)/K =
n − rankκ(I) J , where κ(I) is the residue class field of I . Here, �R P /K and �κ(I)/K are modules of Kähler 
differentials.

Proof. One can find a proof in Eisenbud (2004, Chapter 16, Theorem 16.19). �
3. Quasi-prime difference algebraic systems

Let K be a σ -field. Let a be an element in a σ -extension field of K , S a set of elements in a 
σ -extension field of K , and i ∈ N. Denote a(i) = σ i(a), a[i] = {a, a(1), . . . , a(i)}, S(i) = ∪a∈S {a(i)} and 
S[i] = ∪a∈Sa[i] . For the σ -indeterminates Y = {y1, . . . , yn} and i ∈ N, we will treat the elements of 
Y[i] as algebraic indeterminates, and K [Y[i]] is the polynomial ring in Y[i] over K .

Throughout the paper let F = { f1, . . . , fr} ⊆ K {Y} be a set of difference polynomials over K , [F ]
the σ -ideal generated by F , and p ⊆ K {Y} a σ -prime σ -ideal minimal over [F ]. Let e := max{ord( f i) |
1 ≤ i ≤ r} for the maximal order of an element of F . We assume that F actually involves the trans-
forming operator, i.e. e ≥ 1. We also introduce the following auxiliary polynomial rings and ideals: for 
every k ∈ N, Ak denotes the polynomial ring Ak := K [Y[k]] and �k := ( f [k−1]

1 , . . . , f [k−1]
r ) ⊆ Ak−1+e . 

We set �0 := (0) by definition.
For each non-negative integer k we write Bk for the local ring obtained from Ak after localization 

at the prime ideal Ak ∩p and let pk := Ak−1+e ∩p. For the sake of simplicity, we preserve the notation 
�k for the ideal generated by f [k−1]

1 , . . . , f [k−1]
r in the local ring Bk−1+e and denote by � the σ -ideal 

generated by F in K {Y}p.

Definition 3.1. We say that the system F is quasi-prime at p if �k is a prime ideal in the ring Bk−1+e
for all k ∈ N and � is reflexive.

If the system F is quasi-prime at p, then by the minimality of p, � agrees with p in K {Y}p, since 
� is itself a σ -prime ideal.

Example 3.2. Consider the system F = {(y(1)
1 + y2)(y(1)

1 − y2), y(2)
1 − y1} ⊆ K {y1, y2}. Choose p =

[y(1)
1 − y2, y(2)

1 − y1] which is a σ -prime ideal minimal over [F ]. For each k ∈N, since the generators of 
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�k is linear in the local ring Bk−1+e , �k is clearly prime. To show � is reflexive, let S = K {y1, y2}\p. 
Suppose σ( f ) ∈ [F ] : S , then there exists s ∈ S such that sσ( f ) ∈ [F ] ⊆ p. Note that p is prime and 
s /∈ p, so σ( f ) ∈ p and hence f ∈ p. We can write f = ∑

i∈I αi(y(1)
1 − y2)

(i) + ∑
j β j∈ J (y(2)

1 − y1)
( j) . 

Let s′ = ∏
i∈I (y(1)

1 + y2)
(i) ∈ S . Then s′ f ∈ [F ] and f ∈ [F ] : S . So [F ] : S is reflexive and by Proposition 

1.2.9 of Wibmer (2013), � is reflexive. Thus F is quasi-prime at p.

Remark 3.3. If the σ -ideal [F ] ⊆ K {Y} is already a σ -prime σ -ideal, the minimality of p implies p =
[F ] and all our results remain true considering the rings Ak and the σ -ideal [F ] without localization. 
In this case if F is quasi-prime at [F ], we will say simply that F is quasi-prime.

In this paper, unless otherwise specified, we always assume that F is a difference algebraic system 
which is quasi-prime at p.

We will define quasi dimension polynomials for quasi-prime difference algebraic systems. First let 
us prove a lemma concerning the rank of a certain kind of matrices.

For a matrix E over a σ -field K , we use E(i) to denote the matrix whose elements are the i-th 
transforms of the corresponding elements of E .

Lemma 3.4. For a matrix E over a σ -field K , rank(E(1)) = rank(E). As a consequence, the dimension of the 
subspace spanned by the row vectors of E(1) is equal to the dimension of the subspace spanned by the row 
vectors of E.

Proof. It is clear that the maximal nonzero minors of E(1) and E have the same order since the 
transforming operator on K is injective. It follows rank(E(1)) = rank(E). �
Lemma 3.5. Let E1, E2, . . . , Et ∈ K p×q and

Mk :=

⎛
⎜⎜⎜⎝

E1 E2 · · · Et

E(1)
1 E(1)

2 · · · E(1)
t

. . .
. . .

. . .
. . .

E(k−1)
1 E(k−1)

2 · · · E(k−1)
t

⎞
⎟⎟⎟⎠ .

Then for k large enough, there exists d′ ∈N and s′ ∈ Z such that

rank(Mk) = d′k + s′. (1)

Moreover, the least k such that the equality (1) holds is bounded by (t − 1)(min{p, q} + 1).

Proof. For the sake of convenience, for each pair m, n ∈ N, m ≤ n, let us define an operator πm
n on 

subspaces of K n ,

πm
n (V ) := {v ∈ K m | (0,v) ∈ V ,0 ∈ K n−m},

where V is a subspace of K n .
Suppose k ≥ t − 1. Let us apply the row Gaussian elimination to Mk . Step one, apply the Gaussian 

elimination method to the first (t − 1)p rows of Mk , i.e. the submatrix

A :=

⎛
⎜⎜⎜⎝

E1 E2 · · · · · · Et

E(1)
1 E(1)

2 · · · E(1)
t−1 E(1)

t
. . .

. . .
. . .

. . .
. . .

E(t−2)
1 E(t−2)

2 · · · · · · E(t−2)
t

⎞
⎟⎟⎟⎠ .

Then we obtain a reduced row echelon matrix with several rows containing nonzero elements only 
in the dotted line area. Denote the submatrix consisting of the fragments of these rows in the dotted 
line area by B0. Let U0 be the subspace of K (t−1)q spanned by the row vectors of B0.
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Step two, apply the Gaussian elimination method to B0 and the next block submatrix(
E(t−1)

1 E(t−1)
2 · · · E(t−1)

t

)
. We again obtain a reduced row echelon matrix with several rows 

containing nonzero elements only in the dotted line area:
⎛
⎜⎜⎜⎜⎝

E(1)
1 E(1)

2 · · · · · · E(1)
t

E(2)
1 E(2)

2 · · · E(2)
t−1 E(2)

t
. . .

. . .
. . .

. . .
. . .

E(t−1)
1 E(t−1)

2 · · · · · · E(t−1)
t

⎞
⎟⎟⎟⎟⎠

.

As before, denote the submatrix consisting of the fragments of these rows in the dotted line area 
by B1 and let the row vectors of B1 span a subspace U1 ⊆ K (t−1)q . If we denote the subspace 
spanned by the rows of the submatrix A by W , and denote the subspace spanned by the row 
vectors of E1 E2 · · · Et × 0p×(t−1)q and the vectors in {0}q × W (1) by P , then U0 = π

(t−1)q
(2t−2)q(W ) and 

U1 = π
(t−1)q
(2t−1)q(P ). It follows U (1)

0 ⊆ U1.
For j ≥ 1, denote the set of the row vectors of the block submatrix

(
E( j+t−2)

1 E( j+t−2)
2 · · · E( j+t−2)

t

)

by V j . Then V j+1 = V (1)
j . Continue performing the Gaussian elimination as step two for each block 

submatrix 
(

E( j+t−2)
1 E( j+t−2)

2 · · · E( j+t−2)
t

)
. At each step we obtain a reduced row echelon matrix 

with several rows containing nonzero elements only in the dotted line area:
⎛
⎜⎜⎜⎜⎝

E( j)
1 E( j)

2 · · · · · · E( j)
t

E( j+1)
1 E( j+1)

2 · · · E( j+1)
t−1 E( j+1)

t
. . .

. . .
. . .

. . .
. . .

E( j+t−2)
1 E( j+t−2)

2 · · · · · · E( j+t−2)
t

⎞
⎟⎟⎟⎟⎠

.

Denote the submatrix consisting of the fragments of these rows in the dotted line area by B j and let 
the row vectors of B j span a subspace U j ⊆ K (t−1)q . Recursively we have

U j = π
(t−1)q
tq (Span(U j−1 × {0}q ∪ V j))

for j ≥ 1, where Span represents the spanned linear subspace. Since U j is the subspace spanned 
by row vectors of a submatrix with (t − 1)q columns and no more than (t − 1)p rows, dim(U j) ≤
(t − 1) min{p, q}. We next show that the sequence of subspaces (U j) j∈N satisfies U (1)

j ⊆ U j+1 for all 
j ≥ 0 and if U (1)

j = U j+1, then U (1)
j+1 = U j+2.

Let us do induction on j. The case j = 0 has been proved above. Now suppose j ≥ 1. Then by the 
induction hypothesis, U (1)

j = π
(t−1)q
tq (Span(U (1)

j−1 × {0}q ∪ V (1)
j )) ⊆ π

(t−1)q
tq (Span(U j × {0}q ∪ V j+1)) =

U j+1, and if U (1)
j−1 = U j , then U (1)

j = U j+1. So by Lemma 3.4, dim(U j) = dim(U (1)
j ) ≤ dim(U j+1), 

and if dim(U j) = dim(U j+1), then dim(U j+1) = dim(U j+2). It follows that (dim(U j)) j∈N is a strictly 
increasing sequence and eventually stabilizes at some constant after at most (t − 1) min{p, q} + 1
steps since the dimensions of the subspaces U j are no larger than (t − 1) min{p, q}. So there ex-
ists a non-negative integer r ≤ (t − 1) min{p, q} such that for j ≥ r, dim(U j) = dim(U j+1) and 
dim(Span(U j × {0}q ∪ V j+1)) = dim(Span(U j+1 × {0}q ∪ V j+2)) by Lemma 3.4. Then for j ≥ r, by the 
process of the Gaussian elimination, we have

rank(M j+t) − rank(M j+t−1) = dim(Span(U j × {0}q ∪ V j+1)) − dim(U j)

= dim(Span(U j+1 × {0}q ∪ V j+2)) − dim(U j+1)

= rank(M j+t+1) − rank(M j+t).
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As a consequence, for k large enough, there exist d′, s′ ∈ N such that

rank(Mk) = d′k + s′,
and the least k such that the above equality holds is bounded by (t − 1) min{p, q} + t − 1 =
(t − 1)(min{p, q} + 1). �

Now we introduce quasi dimension polynomials for quasi-prime difference algebraic systems. De-
fine

Jk : = ∂(F , F (1), . . . , F (k−1))

∂(Y,Y(1), . . . ,Y(k−1+e))

=

⎛
⎜⎜⎜⎜⎝

∂ F
∂Y

∂ F
∂Y(1) · · · ∂ F

∂Y(e)

∂ F (1)

∂Y(1)
∂ F (1)

∂Y(2) · · · ∂ F (1)

∂Y(e+1)

. . .
. . .

. . .
. . .

∂ F (k−1)

∂Y(k−1)
∂ F (k−1)

∂Y(k) · · · ∂ F (k−1)

∂Y(k−1+e)

⎞
⎟⎟⎟⎟⎠

,

where each ∂ F (p)

∂Y(q) denotes the Jacobian matrix (∂( f (p)
1 , . . . , f (p)

r )/∂(y(q)
1 , . . . , y(q)

n ))r×n .
Since the partial derivative operator commutes with the transforming operator, we have

Jk =

⎛
⎜⎜⎜⎜⎝

∂ F
∂Y

∂ F
∂Y(1) · · · ∂ F

∂Y(e)

( ∂ F
∂Y

)(1) ( ∂ F
∂Y(1) )

(1) · · · ( ∂ F
∂Y(e) )

(1)

. . .
. . .

. . .
. . .

( ∂ F
∂Y

)(k−1) ( ∂ F
∂Y(1) )

(k−1) · · · ( ∂ F
∂Y(e) )

(k−1)

⎞
⎟⎟⎟⎟⎠

.

Denote by κ(�k) the residue class field of �k in the ring Bk−1+e , by κ(pk) the residue class field 
of pk in the ring Ak−1+e , and by κ the residue class field of p. To define the p-quasi dimension 
polynomial of the system F , we need to add an extra hypothesis on the system F : we assume that 
the rank of the matrix Jk over κ(�k+i) does not depend on i, where i ∈ N. That is to say, the rank of 
the matrix Jk considered alternatively over κ(�k), or over κ(pk), or over κ is always the same.

Remark 3.6. This hypothesis is satisfied for relevant classes of difference algebraic systems, for exam-
ple:

F :=

⎧⎪⎪⎨
⎪⎪⎩

f1 = g1(Y, . . . ,Y(e1)) −z1
...

fr = gr(Y, . . . ,Y(er)) −zr

(2)

where for every 1 ≤ i ≤ r, gi is a polynomial in the (ei + 1)n variables Y, . . . , Y(ei) and the vari-
ables Z = {z1, . . . , zr} form a new set of σ -indeterminates. Note that K [Y[k−1+e], Z[k−1+e]]/�k �
K [Y[k−1+e]], so we can regard the entries of Jk as polynomials in the ring K [Y[k−1+e]]. Since 
� ∩ K [Y[k−1+e]] = 0, the ranks of Jk considered over κ(�k) and over κ are the same.

Theorem 3.7. Suppose F is a difference algebraic system which is quasi-prime at p. Let ψ(k) :=
trdegK (κ(�k)). Then for k large enough, there exists d ∈N and s ∈ Z such that

ψ(k) = dk + s.

Moreover, the least k such that the above equality holds is bounded by e(min{r, n} + 1).

Proof. By the property of Kähler differentials, we have ψ(k) = trdegK (κ(�k)) = dimκ(�k) �κ(�k)/K . 
By Lemma 2.2, dimκ(pk) κ(pk) ⊗ �κ(�k)/K = dimκ(�k) �κ(�k)/K = (k + e)n − rankκ(pk)( Jk) = (k + e)n −
rankκ ( Jk). It follows ψ(k) = (k + e)n − rankκ ( Jk). Thus the conclusions of the theorem follow from 
Lemma 3.5 by setting d = n − d′ and s = en − s′ . �
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Definition 3.8. In the above theorem, ψ(k) = dk + s is called the p-quasi dimension polynomial of the 
system F , and the least k such that the p-quasi dimension polynomial holds is called the p-quasi 
regularity degree of F , which is denoted by ρ .

4. The definition of p-difference index

Following D’Alfonso et al. (2009), we introduce a family of pseudo-Jacobian matrices which we 
need in order to define the concept of p-difference indices.

Definition 4.1. For each k ∈ N and i ∈ N≥e−1 (i.e. i ∈ N and i ≥ e − 1), we define the kr × kn-matrix 
Jk,i as follows:

Jk,i : = ∂(F (i−e+1), F (i−e+2), . . . , F (i−e+k))

∂(Y(i+1),Y(i+2), . . . ,Y(i+k))

=

⎛
⎜⎜⎜⎜⎜⎝

∂ F (i−e+1)

∂Y(i+1) 0 · · · 0
∂ F (i−e+2)

∂Y(i+1)
∂ F (i−e+2)

∂Y(i+2) · · · 0
...

...
. . .

...
∂ F (i−e+k)

∂Y(i+1)
∂ F (i−e+k)

∂Y(i+2) · · · ∂ F (i−e+k)

∂Y(i+k)

⎞
⎟⎟⎟⎟⎟⎠

,

where each ∂ F (p)

∂Y(q) denotes the Jacobian matrix (∂( f (p)
1 , . . . , f (p)

r )/∂(y(q)
1 , . . . , y(q)

n ))r×n .

Since the partial derivative operator commutes with the transforming operator, we have

Jk,i =

⎛
⎜⎜⎜⎜⎝

( ∂ F
∂Y(e) )

(i−e+1) 0 · · · 0
( ∂ F
∂Y(e−1) )

(i−e+2) ( ∂ F
∂Y(e) )

(i−e+2) · · · 0
...

...
. . .

...

( ∂ F
∂Y(e−k+1) )

(i−e+k) ( ∂ F
∂Y(e−k+2) )

(i−e+k) · · · ( ∂ F
∂Y(e) )

(i−e+k)

⎞
⎟⎟⎟⎟⎠

,

where we set that ∂ F
∂Y( j) = 0 if j < 0.

Note that Jk,i+1 = J (1)

k,i .

Definition 4.2. For k ∈ N and i ∈N≥e−1, we define μk,i ∈ N as follows:

• μ0,i := 0;
• μk,i := dimκ ker( J τk,i), for k ≥ 1, where J τk,i denotes the usual transpose of the matrix Jk,i . In 

particular μk,i = kr − rankκ ( Jk,i).

Proposition 4.3. Let k ∈N and i ∈N≥e−1 . Then μk,i = μk,i+1 .

Proof. Since Jk,i+1 = J (1)

k,i for any k ∈ N and any i ∈ N≥e−1, then μk,i = μk,i+1 follows from 
Lemma 3.4. �

The previous proposition shows that the sequence μk,i does not depend on the index i. Therefore, 
in the sequel, we will write μk instead of μk,i , for any i ∈N≥e−1.

For k ∈ N and i ∈ N≥e−1, we denote by �i,k the residue class field of �i−e+1+k ∩ Bi in the ring 
Bi . As an additional hypothesis on the system F , we assume that the rank of the matrix Jk,i over 
κ(�i−e+1+k+s) does not depend on s, where s ∈ N. That is to say, we assume that the rank of the 
matrix Jk,i considered alternatively over κ(�i−e+1+k), or over κ(pi−e+1+k), or over κ is always the 
same.



8 J. Wang / Journal of Symbolic Computation 87 (2018) 1–13
Remark 4.4. This hypothesis is satisfied for relevant classes of difference algebraic systems such as 
(2) in Remark 3.6. Note that K [Y[i+k], Z[i−e+k]]/�i−e+1+k � K [Y[i+k]], so we can regard the entries of 
Jk,i as polynomials in the ring K [Y[i+k]]. Since � ∩ K [Y[i+k]] = 0, the ranks of Jk,i considered over 
κ(�i−e+1+k) and over κ are the same. The analogous hypothesis is also required in various notions 
of differentiation indices.

Proposition 4.5. Assume that the p-quasi dimension polynomial of F is ψ(k) = dk + s and the p-quasi regu-
larity degree is ρ . Let k ∈N and i ∈N≥e−1 . Then

1. The transcendence degree of the field extension

Frac(Bi/(�i−e+1+k ∩ Bi)) ↪→ Frac(Bi+k/�i−e+1+k)

is k(n − r) + μk.
2. For i + k ≥ ρ + e − 1, the following identity holds:

trdegK (Frac(Bi/(�i−e+1+k) ∩ Bi)) = d(i + 1) + (d + r − n)k + s − ed − μk.

Proof. 1. We can consider the field Frac(Bi+k/�i−e+1+k) as the fraction field of

�i,k[Y(i+1), . . . ,Y(i+k)]/(F (i−e+1), . . . , F (i−e+k)).

Therefore by the property of Kähler differentials and Lemma 2.2, the transcendence degree of the 
field extension equals kn − rankκ ( Jk,i) = kn − (kr − μk) = k(n − r) + μk .

2. Since when i + k ≥ ρ + e − 1, by Theorem 3.7, trdegK (Frac(Bi+k/�i−e+1+k)) = d(i − e + 1 + k) + s, 
we have

trdegK (Frac(Bi/(�i−e+1+k ∩ Bi))) = d(i − e + 1 + k) + s − k(n − r) − μk

= d(i + 1) + (d + r − n)k + s − ed − μk. �
We prove another lemma concerning the rank of a certain kind of matrices.

Lemma 4.6. Let E1, E2, . . . , Et ∈ K p×q and

Nk :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1

E(1)
2 E(1)

1
...

...
. . .

E(t−1)
t E(t−1)

t−1 · · · E(t−1)
1

. . .
. . .

. . .
. . .

E(k−1)
t E(k−1)

t−1 · · · E(k−1)
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Then for k large enough, there exists d′ ∈N and a′ ∈ Z such that

rank(Nk) = d′k + a′.
Moreover, the least k such that the above equality holds is bounded by (t − 1)(min{p, q} + 2).

Proof. Assume k ≥ 2t − 2. Denote the submatrix consisting of the first (t − 1)p rows and the first 
(t − 1)q columns of Nk by A, that is

A :=

⎛
⎜⎜⎜⎝

E1

E(1)
2 E(1)

1
...

...
. . .

E(t−2) E(t−2) · · · E(t−2)

⎞
⎟⎟⎟⎠ ,
t−1 t−2 1
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and denote the submatrix of Nk by removing the first (t − 1)p rows by Ck , that is

Ck :=

⎛
⎜⎜⎜⎜⎝

E(t−1)
t E(t−1)

t−1 · · · E(t−1)
1

E(t)
t E(t)

t−1 · · · E(t)
1

. . .
. . .

. . .
. . .

E(k−1)
t E(k−1)

t−1 · · · E(k−1)
1

⎞
⎟⎟⎟⎟⎠

.

In analogy with the proof of Lemma 3.5, apply the Gaussian elimination method to Ck , but from 
bottom to top and from right to left. Then, for k large enough, there exists d′ ∈ N and s′ ∈ Z such 
that

rank(Ck) = d′(k − t + 1) + s′,

and the least k such that rank(Ck) = d′(k − t + 1) + s′ is bounded by (t − 1)(min{p, q} + 1) + t − 1 =
(t − 1)(min{p, q} + 2). And we obtain a reduced row echelon matrix with several rows containing 
nonzero elements only in the first (t −1)q columns. Denote the submatrix consisting of the fragments 
of these rows in the first (t − 1)q columns by B . One can see that B does not rely on k for k large 
enough. Perform the Gaussian elimination method to the submatrix A by using the row vectors of B
and it follows that for k large enough, there exists a constant c ∈N such that rank(Nk) = rank(Ck) + c. 
Hence, rank(Nk) = d′(k − t + 1) + s′ + c for k large enough. Set a′ = −d′(t − 1) + s′ + c. So for 
k large enough, rank(Nk) = d′k + a′ and the least k such that rank(Nk) = d′k + a′ is bounded by 
(t − 1)(min{p,q} + 2). �

Due to Lemma 4.6, we can prove a formula of μk for k  0. (We use k  0 to denote k large 
enough.)

Theorem 4.7. Suppose F is a difference algebraic system which is quasi-prime at p. Assume the p-quasi di-
mension polynomial of F is ψ(k) = dk + s. Then for k  0, there exists a ∈Z such that

μk = (d + r − n)k + a. (3)

Moreover, an upper bound of the least k such that the equality (3) holds is e(min{r, n} + 2).

Proof. Set i = e − 1. Then for k  0,

Jk,e−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂ F
∂Y(e)

( ∂ F
∂Y(e−1) )

(1) ( ∂ F
∂Y(e) )

(1)

...
...

. . .

( ∂ F
∂Y

)(e) ( ∂ F
∂Y(1) )

(e) · · · ( ∂ F
∂Y(e) )

(e)

. . .
. . .

. . .
. . .

( ∂ F
∂Y

)(k−1) ( ∂ F
∂Y(1) )

(k−1) · · · ( ∂ F
∂Y(e) )

(k−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

So by Lemma 4.6, for k  0, there exists d′ ∈ N and a′ ∈ Z such that rank( Jk,e−1) = d′k + a′ , and 
the least k such that rank( Jk,e−1) = d′k + a′ is bounded by e(min{r, n} + 2). Note that d′ = n − d. Set 
a = −a′ . Hence for k  0, μk = kr − rank( Jk,e−1) = (d + r − n)k + a, and an upper bound of the least 
k such that μk = (d + r − n)k + a is e(min{r, n} + 2). �
Remark 4.8. Let ρ be the p-quasi regularity degree of the system F . From the proof of Lemma 4.6, 
we actually have a more accurate upper bound for the least k such that μk = (d + r −n)k +a, namely, 
ρ + e.
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Remark 4.9. In fact, we can deduce the formula of μk for k  0 in a more straightforward way. Fix an 
index i ∈N≥e−1. By Proposition 4.5, for k  0, we have ψ(i − e + 1 +k) = k(n − r) +μk + trdegK (�i,k). 
Note that trdegK (�i,k) will be a constant for k  0 since the increasing chain (�i−e+1+k ∩ Bi)k∈N of 
prime ideals in the ring Bi is stable. So by Theorem 3.7, μk is a polynomial of degree one for k  0.

Definition 4.10. In Theorem 4.7, the least integer k such that μk = (d + r − n)k + a is called the 
p-difference index of the system F , which is denoted by ω. If [F ] is itself a σ -prime σ -ideal, we say 
simply the difference index of F .

It is obvious from the construction that ω is depending on the choice of the minimal σ -prime 
σ -ideal p over [F ]. However, we will prove some properties of ω which meet our expectation for 
difference indices.

5. Properties of p-difference index

A notable property of most differentiation indices is that they provide an upper bound for the 
number of derivatives of the system needed to obtain all the equations that must be satisfied by the 
solutions of the system. This case is also suitable for the p-difference indices defined above.

Theorem 5.1. Suppose F is a difference algebraic system which is quasi-prime at p. Let ρ and ω be the p-quasi 
regularity degree and the p-difference index of the system F respectively. Then, for i ∈N≥e−1 such that i +ω ≥
ρ + e − 1, the equality of ideals

�i−e+1+ω ∩ Bi = � ∩ Bi

holds in the ring Bi . Moreover, for every i ∈N≥e−1 , let hi := min{h ∈N : �i−e+1+h ∩ Bi = � ∩ Bi}. If i +ω ≥
ρ + e − 1 and i + hi ≥ ρ + e − 1, then ω = hi .

Proof. The proof is similar to Theorem 5.1 of Wang (2016) and we omit it. �
Remark 5.2. Taking i = e − 1 in the last assertion of the above theorem, we obtain that if ω ≥ ρ and 
he−1 ≥ ρ , then one has the following equality for the p-difference index:

ω = min{h ∈N : �h ∩ Be−1 = � ∩ Be−1}.

The following proposition reveals a connection between the formula of μk for k  0 and the 
properties of the dimension polynomial of p (see Section 6.1).

Proposition 5.3. Suppose F is a difference algebraic system which is quasi-prime at p. Assume the p-quasi 
dimension polynomial of F is ψ(k) = dk + s and for k  0, μk = (d + r − n)k + a. Then d = σ - dim(p) and 
a = s − ed − ord(p), where σ - dim(p) and ord(p) are the difference dimension and the order of p respectively. 
In particular, if ω is the p-difference index of the system F , then μω = (d + r − n)ω + s − ed − ord(p).

Proof. Let ρ be the p-quasi regularity degree of the system F . Fix an index i ∈ N≥e−1 such that 
i + ω ≥ ρ + e − 1. By Theorem 5.1, for k ≥ ω, �i−e+1+k ∩ Bi = � ∩ Bi . Therefore, for k ≥ ω, by Propo-
sition 4.5 and Theorem 4.7,

trdegK (Frac(Bi/(� ∩ Bi))) = trdegK (Frac(Bi/(�i−e+1+k ∩ Bi)))

= d(i + 1) + (d + r − n)k + s − ed − μk

= d(i + 1) + s − ed − a.

On the other hand, since Frac(Bi/(� ∩ Bi)) = Frac(Ai/(p ∩ Ai)), by Wibmer (2013), Section 5.1,

trdegK (Frac(Bi/(� ∩ Bi))) = σ - dim(p)(i + 1) + ord(p).
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So

d(i + 1) + s − ed − a = σ - dim(p)(i + 1) + ord(p), (4)

for all i ∈ Ne−1 such that i + ω ≥ ρ + e − 1. Compare the coefficients of i on the two sides of the 
identity (4), and it follows d = σ - dim(p) and a = s − ed − ord(p). �
Remark 5.4. Note that �i−e+1 ⊆ � ∩ Bi , so for i ≥ ρ + e − 1, we have ψ(i − e + 1) = d(i − e + 1) + s ≥
d(i + 1) + ord(p) and hence s ≥ ed + ord(p). Therefore, by Proposition 5.3, a = s − ed − ord(p) ≥ 0.

6. Applications of p-difference index

6.1. The Hilbert–Levin regularity

For a σ -prime σ -ideal p, the polynomial ϕ(i) = σ - dim(p)(i + 1) + ord(p) is known as the dimen-
sion polynomial of p (see for instance Wibmer, 2013, Chapter 5). The minimum of the indices i0 such 
that ϕ(i) = trdegK (Frac(Ai/(Ai ∩p))) for all i ≥ i0 is called the Hilbert–Levin regularity of p. The results 
developed on p-difference indices enable us to give an upper bound for the Hilbert–Levin regularity 
of p.

Theorem 6.1. Suppose F is a difference algebraic system which is quasi-prime at p. Let ρ and ω be the p-quasi 
regularity degree and the p-difference index of the system F respectively. Then the Hilbert–Levin regularity of 
the σ -prime σ -ideal p is bounded by e − 1 + max{0, ρ − ω}.

Proof. The proof is similar to Theorem 6.1 of Wang (2016) with a little change and we omit it. �
6.2. The ideal membership problem

It is well known that in polynomial algebra, the ideal membership problem is to decide if a given 
element f ∈ A belongs to a fixed ideal I ⊆ A for a polynomial ring A, and if the answer is yes, to 
represent f as a linear combination with polynomial coefficients of a given set of generators of I .

The ideal membership problem also exists in differential algebra and difference algebra. But unlike 
the case in polynomial algebra, this problem is undecidable for arbitrary ideals in differential algebra 
(see Gallo et al., 1991) and difference algebra. However, there are special classes of differential ideals 
for which the problem is decidable, in particular the class of radical differential ideals (Seidenberg, 
1956, see also Boulier et al., 1995). By virtue of Theorem 5.1, we are able to give an order bound for 
the ideal membership problem of a quasi-prime difference algebraic system.

The following ideal membership theorem for polynomial rings will be used.

Theorem 6.2. (Aschenbrenner, 2004, Theorem 3.4) Let K be a field and g, g1, . . . , gs ∈ K [y1, . . . , yn] be a set 
of polynomials whose total degrees are bounded by an integer d. If g is a polynomial belonging to the ideal 
generated by g1, . . . , gs, then there exist polynomials a1, . . . , as such that g = ∑s

j=1 a j g j and deg(a j) ≤
(2d)2n

for 1 ≤ j ≤ s.

Now we obtain the following effective ideal membership theorem for quasi-prime difference alge-
braic systems:

Theorem 6.3. Suppose F is a quasi-prime difference algebraic system in the sense of Remark 3.3. Let ρ and 
ω be the quasi regularity degree and the difference index of the system F respectively. Let f ∈ K {Y} be any 
σ -polynomial in the σ -ideal [F ] such that ω + max{0, ord( f ) − e + 1} ≥ ρ . Let D be an upper bound for the 
total degrees of f , f1, . . . , fr . Set N := ω + max{−1, ord( f ) − e}. Then, a representation

f =
∑

1≤i≤r,0≤ j≤N

gij f ( j)
i

holds in the ring AN+e , where polynomials gij have total degrees bounded by (2D)2(N+e+1)n
.
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Proof. The upper bound on the order of transforms needed to apply to f1, . . . , fr is a direct conse-
quence of Theorem 5.1 applied to i := max{e −1, ord( f )}. The degree upper bound for the polynomials 
gij follows from Theorem 6.2. �
Remark 6.4. Since we have an upper bound e(min{r, n} + 2) for ω, it suffices to take N =
e(min{r, n} + 2) + max{−1, ord( f ) − e} to get more explicit upper bounds of the order and the degree 
in the above ideal membership problem.

7. An example

Example 7.1. Notations follow as before. Consider the difference algebraic system F = {y(2)
1 − y1,

y(1)
1 − y2, y1 y2 − 1} ⊆ A = K {y1, y2}. Then � = [F ] is a σ -prime σ -ideal and F is a quasi-prime 

system in the sense of Remark 3.3. We have n = 2, r = 3, e = 2, d = 0. The corresponding matrices 
Jk, k = 1, 2, 3, . . . are

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 1 0
0 −1 1 0 0 0
y2 y1 0 0 0 0

−1 0 0 0 1 0
0 −1 1 0 0 0
y1 y2 0 0 0 0

−1 0 0 0 1 0
0 −1 1 0 0 0
y2 y1 0 0 0 0

· · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and Jk,1, k = 1, 2, 3, . . . are

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 0
0 0
0 0 1 0
1 0 0 0
0 0 0 0

−1 0 0 0 1 0
0 −1 1 0 0 0
y2 y1 0 0 0 0

−1 0 0 0 1 0
0 −1 1 0 0 0
y1 y2 0 0 0 0

−1 0 0 0 1 0
0 −1 1 0 0 0
y2 y1 0 0 0 0

· · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since y(2i)
1 = y1, y

(2i+1)
1 = y2, y

(2i)
2 = y2, y

(2i+1)
2 = y1 in the ring A/� for all i ∈ N, we have replaced 

y(2i)
1 , y(2i+1)

1 , y(2i)
2 , y(2i+1)

2 by y1, y2, y2, y1 respectively in Jk and Jk,1 for all i ∈ N. It can be computed 
that rank( J1) = 3, rank( J2) = 5, rank( J3) = 7. In fact, rank( Jk) = 2k + 1 for all k ≥ 1. So the quasi 
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dimension polynomial of the system F is ψ(k) = 2k + 1 and the quasi regularity degree ρ = 1. Also, 
one can compute that rank( J1,1) = 1, rank( J2,1) = 2, rank( J3,1) = 4, rank( J4,1) = 6, so μ1 = 2, μ2 =
4, μ3 = 5, μ4 = 6. In fact, μk = k + 2 for all k ≥ 2. Hence the difference index of the system F is 
ω = 2. One can check that �2 ∩ A1 = � ∩ A1.
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